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Abstract 

A new totally model independent procedure for phase 
extension and improvement in X-ray crystallography, 
based on the discrete Hilbert transforms, is presented. 
The method has been tested using simulated diffraction 
data of a small molecule and simulated and experi- 
mental data of a protein crystal. Starting from a 
randomly incomplete set of correct phases, it allows 
calculation of the unknown phases. Moreover, a set of 
phases affected by a mean phase error of +90 ° can be 
improved to a mean error of +25 ° if the correct figures 
of merit for the reflections are known. The performance 
and the limitations of the technique, as well as the 
perspectives for further developments, are discussed. 

1. Introduction 

The problem of phase extension, i.e. that of calculating 
phases associated with all reflections if only a limited 
number of phases are known, is a classical one in 
crystallography. Phase improvement is a related 
problem. Both are already routinely solved for small- 
molecule structures, using probabilistic relationships 
(see e.g. Giacovazzo, 1980). However, in macromole- 
cular crystallography, where these problems are 
particularly relevant, this is not quite the case. In 
protein structure solution with the multiple-isomor- 
phous-replacement (MIR) technique, very often the 
isomorphism of the heavy-atom derivatives does not 
extend beyond 3 A, resolution or so. Usually, a set of 
phases obtained with the isomorphous-replacement 
method must be improved further, in order to obtain 
an interpretable electron-density map. In the single- 
isomorphous-replacement (SIR) approach, this is even a 
conditio sine qua non. Several techniques based on 
density modification have been proposed in the past to 
extend phases and to improve protein electron-density 
maps (e.g. Davies & Rollet, 1976; Schevitz, Podjarny, 
Zwick, Hughes & Sigler, 1981; Bath & Blow, 1982; 
Cannillo, Oberti & Ungaretti, 1983; Bryan & Banner, 
1987; Wang, 1985; Shiono & Woolfson, 1992; Refaat 
& Woolfson, 1993). The most commonly used among 
them is the procedure currently known as solvent 
flattening, as implemented in slightly different ways in 
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several programs. It consists in detecting, either 
manually or via an automated procedure, the solvent 
regions in a protein electron-density map and in creating 
a mask that defines solvent regions. The latter are 
appropriately flattened, upon which map inversion 
generates new phases for all reflections, including 
those that were eventually left out of the originary 
phasing procedure. Solvent flattening is a powerful 
technique in improving an existing set of phases if a 
good mask can be devised. In practice, this is only 
possible if the starting phase set is reasonably reliable. 

Another procedure for phase extension and improve- 
ment is based on entropy-maximization techniques 
(Bricogne, 1988). Recently, a more sophisticated 
approach has been proposed, based on entropy maxi- 
mization constrained by solvent flattening (Xiang, 
Carter, Bricogne & Gilmore, 1993). 

Here we describe a method of phase extension and 
improvement based on discrete Hilbert transforms. This 
procedure is based on a completely different principle 
from those previously described and has the advantage 
of being absolutely model independent. 

2. Background of the method 

Hilbert transforms, also called dispersion relations or 
Kronig-Kramers relations (Toll, 1956), despite having 
been known to the crystallographic community for a 
long time (Ramachandran, 1969), have never found 
practical applications in the field. In contrast, they are 
widely used in many other areas, including optics and 
spectroscopy (VanderNoot, 1992; Williams & 
Marshall, 1992; Joo & Albrecht, 1993). 

For the sake of simplicity, we shall first illustrate the 
use of Hilbert transforms in the one-dimensional case. 
The extension to three dimensions will be performed at 
the end of this section. Assume we have a complex 
function F(X) = A(X) + iB(X). The dispersion relation- 
ships relate the real and the imaginary parts of this 
function in a simple way: 

OO 

A(X) = (l/n ')P f [B(X')/(X'-  X)]dX', (la) 
- - O O  
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oo 

B(X) = -(I/zr)P f [A(X')/(X'- X)] clX', (Ib) 

where P stands for the principal part of the Cauchy 
integral. Relations (la) and (Ib) form a pair of so-called 
'Hilbert transforms' (HT). It has been demonstrated by 
Toll (1956) that (I) is valid in any scattering experiment 
if F(X) is the Fourier transform of a function f ( t )  with 
the property f ( t ) =  0 for t < 0 (condition of strict 
causality). The causality applies of course in the case of 
time series: when the functionfdoes not depend on time 
but on space, causality cannot be used in the original 
sense defined by Toll (1956). Nevertheless, all the 
formalisms can be applied simply by assuming f ( x )  = 0 
for x < 0 (see also Burge, Fiddy, Greenaway & Ross, 
1976). An important aspect is that no other a priori 
hypothesis on the properties off(x),  except the previous 
one, is necessary in order to ensure the validity of (1). 

The major obstacle in the application of dispersion 
relations to single-crystal experiments has been the fact 
that, in this particular case, the function F(X) vanishes 
in practice for all values of X, except for the lattice 
points. Consequently, the integrals (1) diverge (Kauf- 
mann, 1985). However, they are valid in the case of 
scattering by amorphous samples and can be used to 
constrain the phase values (Makowski, 1981). Only 
recently, the problem was partially overcome by 
Mishnev (1993), who, applying Shannon's sampling 
theorem (Shannon, 1949), derived the following 
expression for the structure factors: 

oo 

F(h/2)  = - ( I / j )  ~ F(k/2)[1 - cosrr(h - k)]/rr(h - k), 
k=--oo 

(2) 

where j = ( -1 )  1/2, h and k are positive or negative 
integers and h # k. If the real and imaginary parts are 
separated, (2) can be written 

A(h/2)  = -(1/zr)  ~ B(k/2)[1 - (--1)h-k]/(h -- k), 
k----oo 

(3a) 

(x) 

B(h/2) = (1/rr) ~ A ( k / 2 ) [ 1 -  ( - 1 ) h - k ] / ( h - k ) .  
k = - o o  

(3b) 

Equations (3a) and (3b) constitute the crystallographic 
counterpart of (la) and (lb) and they relate the 
imaginary to the real part of the structure factor and 
vice versa. Note that half-integer indices are introduced 
in order to overcome the problem of discrete functions. 
The physical reason for this is to be found in the causal 
transform condition: the Shannon sampling theorem 
would allow the reconstruction of F(X) with integer 
sampling points only (crystallographic sampling) by 
defining f(x) in the interval - a / 2 ,  +a /2  (where a is the 

repetition period of the crystalline array). However, in 
this case, the condition f ( x )  = 0 for x < 0, i.e. the 
condition of causal Fourier transform, would not be 
fulfilled. The use of twice the crystallographic sampling 
rate becomes a necessary condition for the application 
of the Hilbert transforms to structure factors [more 
complete discussion of the validity conditions of (3) can 
be found in Mishnev (1993)]. 

In practice, the real and imaginary components of 
structure factors with half-integer indices are given by 
the sum of the imaginary and real components, 
respectively, of structure factors with integer indices 
and vice versa. Consequently, the real part of a 
structure factor with integer index h can only be 
calculated if we know the imaginary components of all 
the reflections with half-integer indices (h/2), which is 
not the case. For this reason, the relationships (3) seem 
at first glance of little use because we cannot measure 
reflections with non-integer indices. 

In three dimensions, relationship (2) can be written* 

F(h/2) -- -j ~_, ~_, ~_, F(k/2) 
kl k2 k3 

3 

x I-I[ 1 - c o s  :rr(h  i - k i ) ] / r r ( h  i - k i ) ,  
i=1 

(4) 

where h - (hlh2h3) and k - (klk2k3). 

3. The phase-extension and -improvement 
procedure 

To understand the meaning of coefficients with half- 
integer indices, let us look at the behaviour of the real 
and imaginary components of the structure factor in one 
dimension, using as an example a one-dimensional 
structure of ten atoms. The values of A(h) and B(h), for 
0 < h < 22, are listed in a graphical form in Figs. l(a) 
and 2(a) for integer and half-integer reflections, 
respectively. Whilst structure factors were calculated 
via the classical formula using the atomic coordinates, 
coefficients for half-integer reflections were calculated 
from the former using (3a) and (3b). Of course, if we 
now recalculate the structure factors, using the same 
relationship, we will obtain the starting values again, 
except for a small approximation due to the truncation 
error. A relevant point is illustrated in Figs. l(b) and 
2(b): if some reflections are deleted from the starting 
set, the half-integer coefficients calculated with the 
reduced set keep the same general behaviour. The 
reason for this is apparent from (3a) and (3b): in the 
calculation of A(h/2),  each term in the sum is divided by 
(h - k) and the relevant terms will presumably be those 
with h not too different from k and/or those with a large 
value of B(k). All others will be negligible in practice. 

* This is the final equation in Mishnev (1993), except for a constant 
factor rr 2. 
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This is more evident in Figs. 3(a) and (b), where the 
real and imaginary parts of  the structure factors were 
calculated using only the real or imaginary part  of  the 
highest terms of  coefficients with half-indices. In 
practice,  only the imaginary parts of  the coefficients 
that have modulus greater than 5 were used in the sum 
(3a) and the real parts in the sum (3b). Compar ison  with 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

h 

(a) 

A(h) 0 :Ul" " " I I  II I r  =" r i r  i r  " : ~  

-10 
0,5 2,5 4,$ 6,5 6,5 10,5 12,5 14,5 16,5 18,5 20,5 22,5 

h 

(b) 

Fig. 1. Real components of the structure factors for a one-dimensional 
arrangement of atoms. (a) Calculated values of structure factors 
(i. e. those with integer indices) are represented by white bars. Black 
bars represent coefficients with half-integer indices, calculated from 
the previous ones using formula (3a). The value of A(0) is 
truncated. (b) Comparison of the real part of the coefficients with 
half-integer indices: those calculated from a complete and correct 
starting set are in white, those calculated from an incomplete 
starting set, where reflections 2, 5, 7, 15 were deleted, in black. 

B(h) 0 :-: 

0 1 2 3 4 5 6 7 5 8 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2  

h 

(.) 

lOFiiiii 
s(,) o 1[: :. IL_~_ 

o10 
0,5 2,5 4,5 6,5 8,5 10,5 12,5 14,5 16,5 18,5 20,5 22,5 

h 

(b) 

Fig. 2. Same as Fig. 1 for the imaginary components of the structure 
factors. 

the correct  values, illustrated in Fig. 3, shows a 
surprisingly good agreement.  

These results suggest that, if  the phases of  an 
appropriate number  of  reflections are known,  it could 
be possible to predict  the remaining ones. Besides, it is 
possible to modify or select the half-index coefficients to 
be used in calculations, introducing in this way a sort of  
filter in the transforms. In the fol lowing,  we describe 
how these principles were used in order  to extend or 
improve phases. 

The considerations discussed above apply to the 
three-dimensional  case in a similar way. Using (4) and 
separating the real and imaginary parts, one can write 

A(h /2)  = - (1 /~ r  3) ~ ~ ~ _ , B ~ / 2 )  
kl k2 k3 

3 
× I-I[1--(--1)h'-k']/(hi--ki) (5a) 

i=1 

B(h/2)  = ( 1 / ~ )  E E E a ( k / 2 )  
kn k2 k3 

3 
x 1-I[1 - ( - - 1 ) h i - k i ] / ( h i  - -  ki).  

i=I  
(Sb) 

For clarity, let us use h to indicate a triplet of  even 
integers and k one of  odd integers: we can now rewrite 
relationships (5) in a more convenient  way [note that, 
under these conditions,  h i - k i for (6a), (6b) and k i - h i 

for (7a), (7b) are always odd]: 

A(h) 

,o, II m 
o I1 . . . . . . . . . . . .  I l m .  . . . . . .  

-10 

-15 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 

h 

(a) 

B'h''I" , . . . . . .  o ,  

-6 
0 1 2 3 4 5 6 7 8 0 10 11 12 13 14 16 16 17 18 19 20 21 22 

h 

(b) 
Fig. 3. (a) Real and (b) imaginary components of the structure factors. 

While bars represent the components calculated with a complete set 
of half-integer indices coefficients using relationships (3). Black 
bars show the same coefficients calculated using only a portion of 
those with half-integer indices, i.e. those with modulus greater than 
5. It appears that the exclusion of the smaller terms in the sum does 
not significantly affect the values of A(h) and B(h); only for 
reflections 1, 2 and 20, 21 will the phases be affected by a relevant 
er ror .  
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3 

AOa/2) = -(8/~) ~ ~ ~ BO~/2) I-I 1 / ( h ,  - k~) 
k I k 2 k 3 i=1 

(6a) 

3 

B(hl2) = (8/~) E E ~ A(k/2) 17I ll(hi - k~) 
k I k 2 k 3 i=1 

(6b) 

3 

AOtl2) = -(8/~) ~ ~ ~-~.B(h/2) I-[ 1/(ki - hi) 
h I h 2 h 3 i=1 

(7a) 

3 

BOk/2) = ( 8 / ~ )  ~ ~ ~AOa/2)  1-I 1 / ( k ~  - hi). 
h I h 2 h 3 i=1 

(7b) 

If we assume that the A(h) and B(h) components of 
the structure factors with integer indices are known, or 
at least a fraction of them, we obviously can use (7a) 
and (7b) to calculate A(k) and B(k) of hypothetical 
reflections with half-indices. From these, in turn, it is 
possible, using (6a) and (6b), to recalculate the original 
A0a) and B(h). Sums in (6) and (7) extend from - o o  to 
+c~,  but the high-resolution terms will presumably 
only make a small contribution to the sum since they are 
in general smaller than the low-resolution terms. 

3.1. The phase-extension process 

Let us divide the set of reflections into two subsets: 
{ Fh} will be the subset of reflections with known phases 
and {Oh} the fraction for which phases are unknown. 
Via (7), we can use subset {Fh} to obtain approximate 
values of A(k/2) and B(k/2) for the entire set, 
{F k + 12k}; from these, we can subsequently, by using 
(6), recalculate the entire set of reflections { F h + I2 h}. It 
is important to note that we obtain new phases for all 
reflections but since we know the moduli we can 
substitute them with the newly obtained ones and start a 
new phase calculation cycle. We can summarize the 
steps in the process of phase extension as follows: 

(i) Using the set of reflections with known phases 
{Fh} (it can be a more or less complete set at limited 
resolution or simply a set made up of a limited number 
of strong phased reflections, as happens with direct 
methods), calculate A(k/2) and B(k/2) via (7) for all 
reflections to a resolution Rl. Consider that for this 
calculation the value of F(000) is needed, which, having 
an intensity much larger than that of all other 
reflections, plays an important role in determining the 
phases of the very low resolution reflections. 

(ii) From A(k/2) and BO~/2), calculate A(h/2) and 
BOa~2), i.e. the set {F h + ~2h}, up to a resolution R 2. 
Empirical tests have shown that R1 > R 2 helped in 
reducing the truncation effects in the sums. 

(iii) Renormalize the values of the newly calculated 
reflections based on their known moduli IF(h)l, using 
IF(h)l 2 = ACll) 2 + B01) 2. NOW repeat the process from 
step (i). 

Modifications can be introduced in step (ii) and 
eventually in step (i). For example, one can limit the 
calculation to the stronger reflections or to classes of 
reflections that are believed to be more accurate. It is 
also possible to introduce weights in the sum. These 
modifications, along with the fact that the experimental 
information contained in structure-factor moduli is 
preserved through the macrocycles, are the basis for 
the convergence of the procedure. These constraints, 
however, are not necessarily sufficient to ensure 
convergence in all cases: some examples of their 
possible use in some successful situations are discussed 
in ~4. 

In the following, these three steps together will be 
called one macrocycle. 

3.2. The phase-improvement process 

Let us consider the realistic situation where a 
complete set of phases is known to a given resolution 
but these phases are affected by experimental errors. In 
the case of a protein structure determined by the 
multiple isomorphous replacement method, to each 
phase is assigned a figure of merit (m) as a weighting 
factor, which indicates the reliability of the phase itself. 
Phases with a figure of merit m of 1.0 are in principle 
expected to be correct, while those with a figure of 
merit close to 0 completely wrong. To introduce this 
information in the calculations, half-integer coefficients 
are calculated by a modified version of (7): 

3 

A(k/2) = - ( 8 / n  -3) ~ ~ ~ mB(h/2) I-I 1~(ks - h,) (8a) 
h I h 2 h 3 i = l  

3 

B(k/2) = (8In "3) ~ ~ ~ mA(h/2) IF-/ll(ki - hi). 
111 h 2 h 3 i = l  

(8b) 

In this way, each coefficient in the sum is weighted 
according to its reliability. In the following cycles, new 
phases are obtained. Of course, we want to modify only 
the wrong phases and keep the correct ones. The last 
can be distinguished by their figure of merit, which has 
given them a strong weight in the sum: the calculated 
phases for reflections with a high m should therefore be 
similar to the previous ones. To take these facts into 
account, in every macrocycle the new phase, ~o N, was 
obtained as the weighted mean of the starting phase, ~o s, 
and the newly calculated one, tpc: 

t,o N = m ~  4- (1 - m)tp~. (9) 

The procedure is then repeated from the beginning, 
calculating half-integer coefficients from (8) and 
structure factors using (6). 
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Table 1. Fract ional  a tomic  coordinates  o f  the small  
molecule  (a pheny la lany l  residue) used  as a test case 

An isotropic B factor of 7 A 2 was used for all atoms. The molecule was 
positioned in a P1 crystal cell, with parameters a = 12, b = 6, 
c = 4 A, ot = fl = y = 90 °. 

x y z 
N 0.25742 0.51183 0.73150 
Cot 0.37992 0.51133 0.73900 
C/~ 0.42550 0.39117 0.43050 
Cy 0.55292 0.38400 0.42100 
C/~] 0.61483 0.48167 0.67900 
Ce] 0.73142 0.47500 0.67025 
C( 0.78608 0.37083 0.40350 
Ce 2 0.72417 0.27317 0.14550 
C3 z 0.60758 0.27983 0.15425 
C 0.42375 0.75067 0.74150 
O 0.52525 0.78967 0.74775 

4, Results and discussion 

4.1.  Test case L A smal l -molecule  crystal  

Structure factors were calculated for a hypothet ical  
molecule of  ten atoms (a phenyla lanyl  residue) in a P1 
crystal  cell, as reported in Table 1. Two different kinds 
of  test were performed:  in the first, the data were 
considered to be error free but only a limited set of 
phases was assumed to be known and phases were 
extended to the remaining reflections; in the second, all 
the data were used in the calculations but random errors 
were introduced in the starting set and the procedure 
aimed at improving the existing phases. In b o t h c a s e s ,  
only reflections within a resolution limit of  0.95 A were 
used. 

(a) Phase  extension.  In this test, the nth reflection was 
deleted from the starting set and all statistics refer only 
to the deleted fraction.* Only  the results for n = 2 and 
n = 5 will be discussed here. For  n : 5, the subset of 
reflections {I2h} was obtained by deleting 20% of  the 
reflections in a random way. After application of  
relationships (7) and (6), the mean overall  phase error1" 
for subset {J-2h} was 54 °. At this point,  only reflection~ 
of subset {12 h} whose modulus was greater than a fixed 
threshold were used to calculate the half- integer 
coefficients, according to (7), along with all the 
reflections of  subset {F  h}. A similar  cri terion was 
used to recalculate integer coefficients: only half- integer 
terms greater  than a given threshold were used in (6). 
This was suggested by an examinat ion of  the statistics 
after every cycle,  which showed a strong negative 
correlat ion between the phase error  and the value of the 
modulus.  The threshold cut-off  values were decreased 

* Deleting a reflection means that its value is not considered in the sum 
in the first macrocycle but the value of its modulus is kept and used 
from the second macrocycle onwards. 
~f The mean phase error is defined, with respect to the 'true' phase tpr, 
as MPE = ~_,i(PD)i/N, where PD = I~0, - ~0cl and, if PD is greater 
than 180 °, it is set equal to 360 ° - PD. 

at every cycle so that the entire set was used in the last 
cycles.  The phase refinement converges  after 12 cycles 
and the mean overall  phase error  for extended 
reflections is 30.5 °. The distribution of  errors as a 
function of moduli  (Fig. 4a) shows that for reflections 
with IF(h)l > 1.0 the uncertainty is about 23°. * 

For  n = 2, the results of the phase predict ion after the 
first cycle are given in Fig.  4(b). The error  is 69 ° but the 
distribution of  the phase error  as a function of  the 
modulus IF(h)l shows that it is smaller  for the highest  
reflections [for IF(h)l > 3.1, the mean error  is about 
39°]. This is also true for half- index coefficients. 
Therefore,  only coefficients with a modulus higher  
than a given threshold were used to calculate the half- 
integer values of  step (i), in order  to speed up the 
convergence of  the procedure,  and the same was done 
for the half- integer coefficients used in step (ii). The 
l imiting threshold was decreased at each cycle so that all 
reflections were used in the calculations of  cycle 8. The 
final result is i l lustrated in Fig. 4(b), where the mean  
phase errors are reported as a function of moduli  of  
structure factors. Despite the relat ively large overall  
error,  the highest  reflections [IF(h)l > 3.1] have a mean  
error of  only about 23 ° . 

* Reflections were calculated on an absolute scale and F(000) = 69.2. 

O -  " . . . . . . .  : - 0  
0,25 0,75 1,25 1,75 2,25 2,75 3,25 3,75 4,25 4,75 

IF(h~l 
(a) 

• 160 ~0 

e " , ,o~ 

O -  - : : : ; . : ". : 0 ('- 
0,3 0,9 1,5 2,1 2,8 3,4 4 4,6 5,2 6 

LF(h~I 
(b) 

Fig. 4. Mean phase error, as a function of modulus, in the case of the 
phase-extension process for a small test molecule. The mean phase 
error is reported on the ]eft, the number of reflections on the fight. 
The abscissa gives the mean value of the modulus within the 
interval. Black diamonds represent the number of reflections in the 
interval. (a) 20% of reflections were selected in a random way and 
their phases were deleted from the starting set. Phase errors were 
calculated only for the 149 reflections with 'unknown' phase. White 
bar: mean phase error after the first cycle; grey bar: mean phase 
error after 12 cycles. (b) Same as (a), except that now the phase of 
every second reflection was deleted from the starting set in a 
systematic way. White bar: mean error after the first cycle; grey 
bar: mean phase error after 50 cycles. 



762 DISCRETE HILBERT TRANSFORMS 

(b) Phase improvement. Two different tests were 
performed. In the first, a mean error A9 of 4-30 ° on the 
phases of reflections was introduced, in the second 
4-70 °. Initial errors were introduced by using a random- 
number generator to produce numbers between - 0 . 5  
and 0.5 and by adding the resulting values (labelled 
rand), multiplied by 4zatp, to each phase. A figure of 
merit was assigned to every reflection according to 
the error introduced for the relative phase, i.e. 
m = 1 -  21randl. Half-integer coefficients were then 
calculated using (8). In this way, the terms with the 
lowest phase error obtained a higher weight and 
produced a set of coefficients that gave, using (6), 
structure factors with an improved phase. In this case, 
the prediction of the moduli was relatively poor but it is 
not important because they are known from the 
experimental work. 

In both cases, after the first cycle, the phase error 
decreased consistently for all reflections, even for those 
with a small modulus, and the improvement continued 
in successive cycles (from 30 to 19 ° in the first case). In 
Fig. 5, the distribution of the phase error as a function 
of the moduli is presented; the starting distribution is 

iI It l l  l! :°1 ~--, q= 

1.! 
0 . . . . . . . . .  0 O~ 

0,4 1,2 2 2,7 3,8 4,3 &1 8,8 0,6 7,4 

IF(h/d) l 

Fig. 5. Test of phase improvement for a small-molecule crystal. A 
mean phase error of 4-70 ° was introduced in a random way on the 
original set of reflections. The mean phase error in the starting set 
as a function of the reflection moduli is shown by white bars, the 
mean phase error after 10 cycles by grey bars. Black diamonds 
represent the number of reflections in the interval (scale on the 
right). 

7O 

40 

30 

2 0 -  
0 5 10 15 

no. of macrocycles 

Fig. 6. Mean overall phase error as a function of the number of 
macrocycles for phase improvement in a hypothetical protein 
crystal. Two tests are shown: in one, a random error of +900 was 
introduced (triangles), in the other a random error of -t-70 ° 
(diamonds). In both cases, the errors converge to similar values, 
around :V_.24 °, and convergence is reached in about ten cycles. 

compared with that obtained after ten cycles of 
calculation and the improvement is clearly visible 
from the figure: in the second test case, the mean 
phase error for the starting set of reflections is 4-68 ° , the 
final one 4-22 ° , with an improvement of nearly 46 ° . 

4.2. Test case II. A small protein 

A hypothetical protein crystal was built up by using 
the atomic coordinates of human muscle fatty-acid- 
binding protein, MFABP, a single-chain protein of 
132 amino acids, with 1027 atoms (Zanotti, Scapin, 
Spadon, Veerkamp & Sacchettini, 1992). The molecu- 
lar model was I~ositioned in a triclinic P1 cell, with 
a = b = c = 40 A and ot = fl = y = 90 °, and data were 
calculated at 2 ,~, resolution. As in the case of the small- 
molecule crystal, a random error on the phases was 
introduced and the figure of merit was evaluated 
accordingly. From a starting mean overall phase error 
of 4-70 and 4-90 ° , mean errors of 4-23.8 and 4-24.5 ° , 
respectively, were obtained after 15 macrocycles. The 
mean phase error as a function of the number of 
macrocycles is shown in Fig. 6: the procedure 
approaches convergence in a few cycles with an 
exponential behaviour. Interestingly, the method can 
reduce the phase error to an acceptable level (in the 
perspective of Fourier-map interpretation) even when 
the starting data set is a very low quality one. The 
phase-error distribution as a function of structure-factor 
moduli and resolution is presented in Fig. 7. It is quite 
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Fig. 7. Test of phase improvement for a simulated protein crystal. 
After introducing a mean phase error of 4-70 ° in a random way, 
phases were improved by 20 macrocycles of refinement, as 
described in the text. The final mean error is -t-23.5 ° . The 
behaviour of the mean phase error as a function of modulus and 
of resolution is reported in (a) and (b), respectively. White bars 
show the starting mean phase errors, grey bars the final ones, black 
diamonds the number of reflections in the interval. 
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similar to that obtained for the small molecule. The 
mean error increases for smaller moduli, as expected. 
The effect of resolution is surprisingly low: the error 
distribution is relatively flat, indicating that truncation 
errors are negligible. 

In order to show the effect of the process on map 
quality, in Fig. 8 three maps are compared: (a) the 
'correct '  one, based on calculated phases; (b) the map 
with starting phases, i.e. +70 ° of mean phase random 
error; (c) the map calculated from the phase set of (b) 
after 20 macrocycles of HT refinement (mean phase 
error 4-23.5°). In map (b), it is not even possible to 
discern the shape of the molecule, while map (c) 

shows nearly all the structural information contained 
in (a). 

4.3. Test case III. Experimental data o f  a protein 
crystal 

The real crystal structure of MFABP belongs to space 
group P212121 (a = 35.4, b = 56.7, c = 72.7A) and 
has been solved and refined to a resolution of 2 A. Data 
for the native protein were collected on a Siemens 
X1000 area detector system coupled to a Rigaku 
RU-200 rotating-anode X-ray generator. 35 568 
reflections up to 2.1 A resolution were measured and 
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Fig. 8. Electron-density maps of a hypothetical protein crystal 
calculated (a) with calculated phases, (b) with a set of phases 
with an overall mean error of +70 °, (c) with phases obtained after 
20 macrocycles of HT refinement and overall mean error of 4-23.5 °. 
Sections from 0 to 0.25 (fractional coordinates) are superimposed. 
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reduced to 7576 independent reflections with an overall 
Rmerg e on intensity of 0.052 (Zanotti et  a l . ,  1992). 
Phases were calculated from the refined model, which 
includes 1027 protein atoms, 56 water molecules and 16 
C atoms of a fatty acid chain. As in the previous cases, a 
random error on phases was introduced and the figure of 
merit was evaluated accordingly. No attempt was made 
to put the data on an absolute scale and no tr cut-off was 
applied. Reflections absent from the data set (the 
completeness to 2.1 ,~, is about 90%) were simply 
ignored and not considered in the statistics. From a 
starting mean overall phase error of -t-70 °, a mean error 
of  +33.3 ° was obtained after ten macrocycles. The 
mean overall error is about 9 ° greater than that obtained 
with the simulated data of the previous example, 
starting from the same initial error. This behaviour 
can be understood by looking at the phase-error 
distribution as a function of moduli (Fig. 9a), which 
is quite different from that obtained in the previous 
cases: the mean phase error, which is around +19 ° for 
IFobsl greater than 219, drastically increases to +72 ° for 
Ifobsl less than 10. Evidently, experimental errors on 
intensities play a role, which is particularly relevant for 
very weak reflections. The effect on resolution is also 
significant (Fig. 9b), but this is probably attributable to 
the previous fact rather than to the effect of truncation. 
Despite this, the phase improvement is highly signifi- 
cant and the inaccuracy in measurement of  the data does 
not affect the procedure overall. 
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Fig. 9. Test of phase improvement for a real protein crystal (space 
group P2t2t2 i , Z =4). With experimental moduli and phases 
calculated from the molecular model, a mean phase error of 4-70 ° 
on phases was introduced in a random way. Phases were improved 
by 10 macrocycles of refinement, as described in the text. The final 
mean error is +33.3 °. The behaviour of mean phase error as a 
function of modulus and of resolution is reported in (a) and (b), 
respectively. White bars show the starting mean phase errors, grey 
bars the final ones, black diamonds the number of independent 
reflections in the interval. 

5. Conc lus ions  

Two different tasks were considered in this paper: (a) 
starting from an incomplete set of correct phases within 
a resolution sphere, to calculate the values of the 
remaining ones; (b) to improve a set of phases affected 
by a given error, assuming that correct estimates of 
errors are available. The degree of success in the first 
case strongly depends on the completeness of the 
starting set of phases: if most phases are known, the 
remaining ones can be predicted with a small error 
(which increases with the incompleteness of the starting 
set). In any case, at least about 50% of the possible 
phases must be known, in order to obtain a reliable 
estimate of the remaining set. Another limitation of the 
method is presented by the distribution of the known 
phases: in fact, the phase of reflection h mostly 
depends, in the present approach, on the reflections 
with indices close to it: the procedure seems therefore 
more suitable for the extension of randomly unphased 
reflections than of an entire shell of resolution. 

For the phase-improvement task, the critical point 
seems to be the weighting in the sums: the procedure 
can distinguish between 'good' and 'bad'  terms (and use 
the former to improve the latter) only if  a reliable figure 
of merit can be calculated. This was not a problem in 
our tests with calculated phases but it will play a 
fundamental role in the extension of a MIR or SIR data 
set. This task will rely on the estimates of the protein 
phase probability, which are calculated from the 
derivative data: the related figures of merit may suffer 
from systematic errors. Our present activity is therefore 
aimed at assessing how well the described HT 
procedure behaves in the common situation when 
experimental phases are available, but they need to be 
improved in order to attain an interpretable electron- 
density map. 

Finally, the use of discrete Hilbert transforms is 
based on the so-called 'causality'  condition and no 
assumptions need to be made on electron-density 
characteristics, as for atomicity or positivity in classical 
direct methods; nor on the molecular model, like in 
some density-modification procedures. For that reason, 
the present approach appears to be complementary to 
the previous ones and could eventually be combined 
with them to help in solving the phase problem. 
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Cervellino for valuable discussions. We are grateful to 
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